
1 DISCLAIMER

These notes are still in heavy revision, and I don’t guarantee that what’s here
is correct or, regarding the computational models, altogether what I think we
should use.

2 Concept of effective stress

Hooke’s law for a 1D saturated porous medium with pore pressure effects in-
cluded reads

σs + α(p− pr) = γεs (1)

where α is the Biot constant (which we hereafter set its usual value of unity), σ is
the stress, ε is the strain, γ is a constant that depends on elastic properties, p is
the pressure, the subscript s refers to the soil matrix, and the subscript r refers
to a reference value. We adopt the convention that the stress is negative for
compression. Define the amount of pore pressure p∗ in excess of the hydrostatic
pressure (hereafter called the excess pressure) as

p∗ = p− (psurf + ρwgz) (2)

where ρ is the density, g is the gravitational acceleration, z is the depth, the
subscript w refers to water, and the subscript surf refers to the surface value.
Setting pr to psurf in (1) and combining with (2) yields

σs + (p∗ + ρwgz) = γεs (3)

Hence, for any deformation to occur in the soil matrix the stress must exceed
the value −(p∗+ρwgz). We define the effective stress σ′s as the amount of stress
in excess of this quantity, so that we may write

σ′s ≡ σs + (p∗ + ρwgz) = γεs. (4)

3 Consolidation under surface loading

Consider a 1D column of fluid-saturated porous medium; let σl be the force per
unit area supplied by a load at the top of this column. This force will contribute
to the deformation of the soil matrix and to an increase in fluid pore pressure;
therefore, we may write

σl = −σ′s + p∗. (5)

Now suppose that the effect of the surface load is to compress the soil matrix
while leaving the total volume of soil unchanged. Even though the soil volume
is unchanged, the soil will occupy a smaller volume of space than before because
of the decreased void space. The decrease in the volume of space occupied is
given as

−∆V = −βV0∆σ′s (6)

where β is the soil matrix compressibility, V is the column volume, and the
subscript naught refers to the initial value. −∆V is also the decrease in space
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available for fluid to occupy, that is, the decrease in the void space volume.
Hence,

−∆V = −∆Vv = Vv0 − Vv = φ0V0 − φV ≈ −V0∆φ (7)

where the subscript v refers to the void space, and the approximation holds good
as long as −∆V is not too large. Combining equations (7) and (6), dividing by
the time increment ∆t, and letting this increment go to zero yields

β
∂σ′s
∂t

=
∂φ

∂t
. (8)

The decrease in space available to the fluid will cause the pore pressure to in-
crease, which will in turn drive fluid from the top or the bottom of the column.
The equation governing the pressure evolution during this process can be ob-
tained by substituting (8) into the mass continuity equation. The substitution
gives

β
∂σ′s
∂t

= −∂v
∂z

(9)

where v is the vertical Darcy velocity, which may be written in terms of the
excess pressure p∗ as

v = −k
µ

∂p∗

∂z
. (10)

In this expression, k is the permeability and µ is the dynamic viscosity. Putting
(10) into (9) and using (5) to evaluate the time derivative results in

∂p∗

∂t
=

k

βµ

∂2p∗

∂z2
. (11)

where we have assumed that σl is constant in time. Equation (11) is the fun-
damental equation of consolidation theory as advanced by K. Terzaghi. The
combination k/βµ we denote as cv and refer to as the consolidation constant.
For a 1D problem we set poisson’s ratio ν equal to zero; then may also write
cv = Ek/µ where E is Young’s modulus.

4 Subsidence due to thawing

Consider a 1D column of fully-saturated frozen soil heated from above, so that
a thaw front progresses from the surface downward. The depth of this thaw
front after a time t has passed is given by

Z(t) = (κeff t)
1
2 (12)

where κeff is an effective diffusivity constant. When a thin layer of height ∆Z
thaws, the soil will deform under it’s own weight as well as that of the soil above
it. Let us assume, as in section 3, that this deformation results in decreased
porosity without decreasing the soil volume. Then equation (11) applies and we
may used a fixed pressure condition at the top boundary. In order to formulate a
well-posed problem, therefore, it remains only to find the appropriate boundary
condition for the thaw front location z = Z(t). The soil below this depth does
not deform as is hence of no interest. If the average Darcy velocity of the fluid
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in the layer ∆Z is v then the volume of fluid liberated from the top of this layer
in an increment of time ∆t is

−∆V = −vA∆t =
kA∆t
µ

∂p∗

∂z
(13)

where V is the volume of the layer and A is the cross-sectional area. The minus
sign in the middle term reflects that we have chosen v as negative upward. Then
the fractional volume decrease is

−∆V
V

=
k

µ

∆t
∆Z

∂p∗

∂z
= β∆σ′s (14)

where we have used the fact thatA/V = 1/∆Z for the first equality and equation
(6) for the second. Assuming that there is no deformation initially, σ′s0 = 0.
Also, by definition (4) and the fact that σs = −ρsgZ we have

σ′s = −ρsgZ + p∗ + ρwgZ = p∗ −∆ρgZ (15)

where ∆ρ ≡ ρs − ρw. Equation (15) says that deformation of the soil matrix is
caused by a combination of the excess pore pressure and the so-called “floating
weight” of the soil itself. Putting (15) into the second equation of (14) and
taking the limit as ∆Z → 0 gives

p∗ −∆ρgZ = cv

(
dZ

dt

)−1
∂p∗

∂z
(16)

where p∗ and its derivative are to be taken at z = Z. Equation (16) is the
boundary condition that p∗ must satisfy at z = Z. Once (11) has been solved
with the boundary condition (16), equation (3) may be integrated to find the
soil displacement.

5 Subsidence due to drainage

Consider again a 1D column of fully-saturated frozen soil heated from above,
with a thaw front progressing downward. Furthermore, let there be a horizontal
drainage face at the bottom, i.e., a horizontal fluid flow pathway leading to some
region of pressure lower than the hydrostatic pressure at that depth. We will
without loss of generality consider the case when the drainage face leads to the
surface at some lateral distance from the column. This situation might describe,
for example, a horizontal fracture at the bottom of a column of soil on top of
a hill. Fluid will begin to exit the column from the bottom at the moment the
thaw zone reaches the drainage face. We will assume that fluid vacates to some
extent the pore space and that the soil is sufficiently weak as to collapse into the
newly created void instantaneously. During this process, surrounding pressures
will approach the pressure, psurf , of the drainage face. Consider a thin section
of height ∆Z in which the soil has just begun to fail. By combining equations
(7) and (13) we obtain

k

µ

∂p∗

∂z
A∆t ≈ V∆φ. (17)

Dividing both sides by V and letting ∆t go to zero gives

dφ =
k

µ

∂p∗

∂z

(
dZ

dt

)−1

(18)
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where dZ/dt is the average upward velocity of the drainage zone, i.e., of the
pressure pulse that ensues at the onset of drainage. Averaging both sides of
(18) across the layer yields

φ = φ0 +
k

µ∆Z

(
dZ

dt

)−1

(p∗ + ρwgZ), (19)

where we have used the fact that p∗0 = −ρwgZ and assumed that the combina-
tion ∆Z(dZ/dt) is constant. Because p∗ + ρwgZ = p − psurf , equation (19) is
equivalent to

φ = φ0 + α(p− psurf ), (20)

where

α ≡ k

µ∆Z

(
dZ

dt

)−1

. (21)

Equation (20) is the starting point for the paper on subsidence that we have
recently completed. We may estimate the velocity of the pressure pulse graphi-
cally from an analytic solution obtained on substituing (20) into the continuity
equation and solving with the appropriate boundary conditions. This velocity
may then be compared with the value given by equation (21) with the param-
eter values used to obtain the analytic solution plugged into it; the velocities
obtained in this way are found to agree.

6 Computational framework for calculating con-
solidation under small strains

Consider a control volume of initial height h0 with node location z0, and take
the z coordinate as positive downward. If the control volume is embedded
in the soil matrix, then a deformation u(z) in the soil matrix will lead to a
corresponding deformation of the control volume. The top of the control volume
will be displaced by an amount u(z0−h0/2) while the bottom will be displaced
by u(z0 + h0/2), where u must be positive downward because z is positive
downward. Then the height after deformation of the control volume is given as

h = h0 + u(z0 + h0/2)− u(z0 − h0/2) ≈ h0

(
1 +

∂u

∂z

)
(22)

and hence the change in height is

∆h ≈ h0
∂u

∂z
. (23)

If the cross-sectional area of the control volume does not change, then equation
(7) implies that

∆h ≈ h0∆φ. (24)

Combining the last two equations gives

∆φ ≈ ∂u

∂z
≡ ε (25)
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where ε is the vertical strain. If equation (1) is generalized to include thermal
effects the result is

σs + α1(p− pr) + α2(T − Tr) = γεs. (26)

The force balance equation governing the stress σs is

∂σs
∂z

= −ρsg. (27)

Putting (25) into (26) and substituting the result into (27) yields

∂(γφ)
∂z

= α1
∂p

∂z
+
∂(α2T )
∂z

− ρsg + φ0
∂γ

∂z
. (28)

Integrating the above equation from the surface downward yields

φ =
1
E

[(p− p0) + αT − α0T0 − ρsgz + φ0E] (29)

where the naught subscript refers to surface values, α1 has been set to unity,
α2 has been replaced with α, and γ has been replaced with E. When ice is
present, the loss of volume in soil matrix compression is not equal to the entire
void space volume, but only to that portion occupied by liquid or gas phases.
In this case, define

φ̃ = φ(1− Si) (30)

where Si is the volume fraction of ice. The derivation of (29), with φ at each
step replaced by φ̃, is unaltered. Therefore, in terms of φ equation (29) becomes

φ =
1

(1− Si)E
[(p− p0) + αT − α0T0 − ρsgz + φ0(1− Si0)E] . (31)

The strength of the soil E is a function of the liquid, gas, and ice volume
saturations Sl,g,i as well as the initial porosity φ0. Similarly, the thermal expan-
sion coefficient α is a function of these variables. Equation (31) may be coupled
together with differential equations representing mass and energy conservation
to obtain a set of three differential equations in three unknowns. These equa-
tions can then be solved by a some nonlinear implicit numerical procedure, i.e.,
Newton-Raphson iterations, to obtain T , p, and φ. From the decrease in poros-
ity, (24) may be used to calculate the new height of a control volume, and then
surface subsidence may be obtained by adding up the height decrease along each
vertical column of control volumes.

7 Fully saturated column

As an illustration of how equation (31) predicts thaw subsidence consider a fully
saturated, thawed column of height L. For simplicity suppose that αT does not
vary and that Si0 = 0. Then (31) becomes

φ = φ0 −
∆ρgz
E

(32)
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where ∆ρ = (ρs − ρl). The average decrease in porosity of the column is

−〈∆φ〉 =
∫ L

0

∆ρgz
LE

dz =
∆ρgL

2E
. (33)

The fractional decrease in the height of the column is related to 〈∆φ〉 by

F ≡ ∆L
L

= 〈∆φ〉. (34)

Hence, for a given value of F ,

E = −∆ρgL
2F

. (35)

For an example of the magnitude of E that this formula implies, the values F
= 0.3, ∆ρ = 700 kg/m3, g = 9.8 m/s2, and L = 10 m give E = 0.11 MPa.

8 Partially saturated column

9 Massive ice

Consider a volume cell of mostly ice with a small amount of soil dispersed
within it. The soil displacement during melting of the ice cannot be modeled
via Hooke’s law because the soil strain will now be large. If the volume of the
cell is taken as the smallest cube that encloses the soil, that volume will decrease
upon melting of the ice. The porosity is related to the cell volume by

V =
Vv
φ

=
V − Ms

ρs

φ
(36)

where Ms is the mass of soil in the cell. Solving this equation for V one obtains

V =
Ms

ρs(1− φ)
(37)

and solving it for φ yields

φ = 1− Ms

V ρs
. (38)

We seek a formula that gives V as a function of ice volume saturation Si. The
porosity will then also be given as a function of Si via equation (38). The
function V = V (Si) should satisfy

1. V (Si = 0) = Vthw

2. V (Si = Si,0) = V0

3. dV
dSi
|Si=Si,crt >> 0

where Vthw is the volume of the cell after it has been completely thawed and
Si,crt is a critical “collapse” ice saturation below which the cell’s volume de-
creases rapidly upon further melting of the ice. Using (37), Vthw is given in
terms of Ms, ρs, and some minimum allowed porosity φthw by

Vthw =
Ms

ρs(1− φthw)
. (39)
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A function that satisfies the above criteria is given as

V (Si) = Atanh[B(Si − Si,crt)] + C (40)

where B is some large number that controls the slope of V (Si) at Si,crt,

A =
V0 − Vthw

tanh[B(Si,0 − Si,crt)] + tanh(BSi,crt)
(41)

and
C = Vthw +Atanh(BSi,crt). (42)
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